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Abstract-A numerical algorithm for radiative transfer characteristics calculation in an absorbing, scat- 
tering and emitting medium of various multidimensional geometry is proposed. Some results of numerical 
investigation of the influence of optical properties and geometric form of medium on the radiative transfer 

characteristics are discussed. 0 1998 Published by Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The study of the mechanism of radiation propagation 
has a great significance for different scientific 
branches. They include radiative and complex heat 
transfer, spectroscopic analysis of plasma, structure 
and thermal conditions of planetary atmospheres 
and others. An analysis of the literature shows that this 
problem is being elaborated by the researchers in 
different scientific centers. As a result, at present there 
are a lot of methods for the numerical solution of the 
radiative transfer problem in the participating media. 
These are such methods as the Monte-Carlo method 
[l], zone method [2], spherical-harmonics approxi- 
mation [3], radiation element method [4], method of 
characteristics [S], discrete ordinates method [f%9] and 
others. Each of 1:hem has its own advantages and 
disadvantages. Al this point it should be noted that, 
while investigating the radiative transfer in selectively 
absorbing, emitting and scattering media of complex 
geometry, none of those methods can provide a high 
accuracy of computation when the computer 
resources have reasonable limits. That is why a sol- 
ution algorithm free of marked demerit and some 
results of numerical investigations of the influence of 
geometric form a:nd optical properties of medium on 
the radiative transfer characteristics under the con- 
ditions which are typical for furnaces in power plants 
are proposed in the paper. 

2. METHOD 

2.1 Mathematics! model 
The equation describing the transfer of mono- 

chromatic radiation under the condition of local 
thermodynamic equilibrium in an absorbing, scat- 
tering and emitting medium has the following form : 

7. vz(r, i) + (X(F) + a(~j)z(r, i) 

= X(q)B(T(i;))+ $ p(f, i,l’)z(f,Fj da’. (1) 

Boundary conditions for radiative transfer equation 
(1) for media bounded by a surface of favorable cur- 
vature are of the form [5] : 

w, 0 1 (7.n) < o = 1, (p, 0 

x(P, i, 7) - Z(P, 7) *(7; * A) dn’ (2) 

where p(P, i, 7) is a reflection distribution function of 
a bounding surface ; Z, (P, 0 is an incident radiation 
intensity at the boundary point P. This condition (2) 
may be written for model surfaces as follows : 

(1) diffuse-emissive surface 

z(P,~~I(~.~~~~ = ~(p)fqT,)+ ye, (3) 

where 

Qp = 1 Z(P,I’)@‘,ff).dfi 
Jm 

(2) specular surface 

Z(P, 0 I(7.A) < 0 = w, n (4) 

where ? is a direction of ray which has been reflected 
on the surface to the direction i; 
(3) transparent surface 

Z(P, 0 I (7.nj < o = 1, (p, 0 (3 

where Z,,(P,i) is the radiative intensity which is inci- 
dent to the participation medium. 

The scattering phase function is usually determined 
through the Legendre’s polynomials as [6, 71 
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NOMENCLATURE 

Z(P, 0 intensity of radiation at the point ? 
along direction of propagation i 

X(F), u(f) absorption and scattering 
coefficients 

B( 7”) Plank’s blackbody radiation at the 
temperature T 

p(f, i, 7) radiation scattering phase function 

Q* density of outgoing radiant flux on the 
boundary surface 

r optical density of medium 

SC albedo for scatter 
& emissivity of a boundary surface 
?? external normal to a bounding surface 
W considered volume 
R solid angle 
TW temperature of boundary surface 
Tll temperature of medium near the 

boundary surface 

4 = QiQmax reduced density of outgoing 
radiant flux on the boundary surface. 

p(f,i,I’) = ~(2n+i).a,.~.(r,i.r). (6) 

As is shown in ref. [lo], for many cases the phase 
function may be determined in the ‘transport’ 
approximation : 

P(P, r, I’) = a(~) - [i +4776(7+ k)] (7) 

where a(f) is a double part of downward radiation 
scattering on its interaction with an elementary vol- 
ume of medium. In this case, equation (1) with aniso- 
tropic scattering is transformed to an equation with 
isotropic scattering by the substitution of u on a * o. 

2.2. Numerical method 
The solution algorithm of the integro-differential 

equation (1) with boundary conditions (2) is a com- 
bination of the discrete-ordinate method [ 1, 51, and 
the finite element method [l 11. According to the dis- 
crete-ordinate method, the radiative propagation 
directions (Nd = 2 + N+ - NO) are given. Here, N+ is the 
directions number over the polar angle (0 < C#J < 271) 
and NB is the directions number on the azimuthal 
angle (0 < 0 < n). For each direction, k = 1,. . . , Nd, 
equation (1) is represented as 

ik - vp, ik) + U(F) . Z(F, zk) = P(F) (8) 

where Sk is the so-called source function along the 
direction, ikr which is determined by the right-handside 
of the equation (l), a = x+ e is the extinction 
coefficient and ik = sin& *cos& * i-t sin& * sinr$, * 
j+cose,-R. 

According to the finite element method, the dis- 
cretization of the calculative domain into finite 
elements is made. As a result of this procedure we 
receive a number of elements (NJ and nodes or grid 
points (NJ, for which the value of radiative intensity 
has to be computed in every direction. 

The linear basis function $,(Q is selected for a typi- 
calgridpoint,i= l,..., Np. This function satisfies the 
conditions tii(ri) = 1 and $i(i;> = 0 for every j # i. 
Then, the radiant intensity for the kth direction may 
be formulated through basis functions : 

where Zf is the radiative intensity in the ith node along 
the kth direction. Using the Galerkin method [S, 1 l] 
the finite element form of the equation (6) can be 
represented as 

sss 
(ikvzk(r) +Cr(~)‘)r”(f)) . Ii/i(?) dw 

w 

= 
sss 

Sk(f)$i(f) d W (10) 
w 

for every i = 1,. . . , Nr. According to equation (9), 
system of linear equations is received as 

n;rk.% = p 

where 

sss (ikv$j(f) +Cr(f)$‘j(F)) * $i(r) dw 
m=l w,,, 

SSI Sk(Q,bi dw 
m=I w”, 

( 
w= ?Wrn W, = mth element (11) 

m=l > 

Boundary conditions are considered before solving 
the system (11). If the ith point is a boundary node 
and (i,* fi) < 0, then Z: is computed by the formula 
(2). Then it is supposed that Mk, = 0 for every 
J = 1,. , N,, and MI: = 1 and Y: = I:. 

After this procedure the system (11) is solved by any 
known method (for example, it may be a Gaussian 
method) and radiative intensities along kth direction 
are found for all nodes I. After calculations for every 
selected directions the integral terms in equations (1) 
and (2) are calculated by the well-known quadratic 
Gaussian formula. For example : 
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where A, are wei,ghts of the Gaussian formula [ 121, 
albedo for scatter p(fi, i,, im) is determined according 
to equation (6) and $(b, r~,) is determined by 

s(i,fi) = 
i 

i-ii, i-it 2 0 

0, 7.e < 0. 
(13) 

Equations (1) shows that the source’s function, 
Sk(?)), and bound.ary conditions (2) depend on the 
radiative intensities. So it is necessary to organize an 
iterative process with successively more accurate 
definitions of radiation intensities. Thus, the proposed 
algorithm has the following structure. 

(1) Values of radiation intensities are taken to be 
equal to zero or determined from some approximation 
solution which is faster. In the last case it should be 
noted that for successful solution the approximate 
values of radiation intensities must be less than that 
obtained from the solution problem (1,2). 

(2) Source’s function, Sk(f)), and radiant flux 
density, Q,(f),, are determined according to equations 
(8 and 9). 

(3) Using the formula (1 l), matrix fik and vector 
Bk are estimated, and taking into account the bound- 
ary conditions the radiative intensity, Zk, is calculated 
for every selected (direction, k = 1, . , Nd. At the same 
time the relative error is calculated in matching two 
successive iterative approximations (s and s+ 1) of 
radiation intensit:les 

(4) The validity of inequality 6 < a,, where 6, is 
the given maximum relative error, is verified. If the 
condition is violated, then the calculation is repeated, 
beginning from item 2. 

One iteration requires, approximately, 15 s of com- 
puting time on an AT/286 computer for 300 elements 
and 50 directions,. Numerical experiments show that 
a relative accuracy of 0.001 can be achieved at 3-8 
iterations at SC <: 0.9. The iteration number depend 
on the optical properties of medium and boundary 
surfaces. 

The series of numerical experiments have been 
made for the appraisal of the proposed method accu- 
racy. Compariso’n with results obtained by other 
authors was confirmed with its high efficiency and 
reliability for the calculation of radiative transfer 
characteristics in the selective absorbing, emitting and 
scattering media of complex geometry [8]. 

3. RESULTS 

3.1. Znjluence of the medium’s optical properties 
Hereafter, the optical density of the medium (r), 

albedo for scatter (SC), the reduced density of out- 

going radiant flux (q) and the reduced radiant inten- 
sity (i) are defined as 

r=x;L, Sc=o/(x+ci) 

where x,,, is the average absorption coefficient, L, 
is the average size of domain, B, = B(Z’,,,), B, = 
B(T,,,). The reduced temperature is defined 
as @ =(T- TmiJI(Tm,,- T,,,). 

Investigation of the influence of medium optical 
properties on the radiative transfer characteristics is 
worthwhile carrying out on the model problems of a 
flat layer. This is important for the exception of the 
medium geometric form influence. Some results of the 
above investigation are reduced and illustrated below. 
The results meet the following conditions : 

(1) A flat layer of absorbing, emitting and scat- 
tering medium is being considered, 0 is a direction of 
ray propagation (Fig. 1). 

(2) The results correspond to the following tem- 
perature distribution O(x) (Fig. 1, T,,,,, = 2000 K and 
T,,, = 1000 K). 

(3) The spectral radiation is considered to be of a 
wavelength equal to 3 pm. 

(4) Distributions of x and c are homogenous. 

It is worthwhile accepting some other parameters 
for investigation of the dependence on radiative trans- 
fer characteristics from the optical density of medium. 
That is why we considered a flat layer with transparent 
boundaries [condition 2.3, Z$) = 01. The analysis of 
numerical investigation results allows one to detect 
the following special features of the influence of the 
optical density of media on the characteristics of radi- 
ative transfer : 

(1) When O(x) = const (Fig. 1, curve 4) the out- 
going radiant flux density is increasing and q(t) -+ 1 
as z -+ co (Fig. 2, curve 4, SC = 0). 

(2) If the medium is nonhomogeneous 
[O(x) # const], then q(z) has its pronounced 
maximum at a certain value of the optical density z, 
(Fig. 2, curves 1-3, numbers of curves correspond to 
numbers of the temperature distributions) ; 

0 0.5 1.0 
x 

Fig. 1. Temperature distributions. 
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4 

7 

Fig. 2. Reduced density of outgoing radiative flux as a func- 
tion of the optical density of medium. 

q(0) = Z,/B, and q(z) = Bl/B2 as 7 + co. Hereafter, 
this value of the optical density 7, will be referred to 
as a critical optical density. In the typical temperature 
range (100&2000 K) for furnaces, the critical optical 
density does not practically depend on the wavelength 
and its value may be approximated as 

7, .% l/4&, where s = /W@(i)dW//WdW. 

(3) Outgoing radiant intensities Z(v, 1) also have 
maximums, but in this case the critical optical density 
is a function of propagation direction (Fig. 3, tem- 
perature distribution-3). 

The investigation of the influence of scattering pro- 
cesses on the radiative parameters has been carried 
out under the same conditions as for the influence 
of the optical density. Numerical experiments have 

1.c 

i 
0.5 

Fig. 3. Leaving radiant intensity as a function of the optical 
density of medium and the direction of propagation 0 : (1) 

0 = 0 ; (2) 3rt/8 ; (3) x/4. 

1 To 10 100 
7 

Fig. 4. Influence of scattering on the reduced density of 
outgoing radiative flux: (1) SC = 0; (2) SC = 0.3; (3) 

SC = 0.6; (4) SC = 0.9. 

shown that scattering decreases the outgoing radiant 
flux density q (Fig. 4, temperature distribution-3). 
However, it should be noted that the outgoing radiant 
intensity can increase depending on absorbing optical 
thickness of medium and single-scattering albedo 
(Figs. 5 and 6). The angular distribution of radiant 
intensity is illustrated by Fig. 6. This picture confirms 
the mentioned result on the influence of SC and 7 on 
the radiant intensities, so for a flat layer the optical 
thickness along the direction 0 is defined by 
r(O) = r/cod. This result is very important for the 
definition of the selective component absorbing 
coefficient of the selectivity absorbing, emitting and 
scattering media in the finite spectral range and for the 
diagnostics of such media. Really, the effect described 
above occurs along the contour of the absorbing line 
and changes the transmissivity of the medium. Thus, 

i.a 

i 

Fig. 5. Leaving radiant intensity as a function of the optical 
density of medium and the share of scattering processes : (1) 

SC = 0; (2) 0.3 ; (3) 0.6; (4) 0.9. 
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.I 
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0.5 Pk 0 

0 0.5 1.0 

Fig. 6. The angular distribution of the leaving radiant inten- 
sity (z = 0.5) : (1) SC = 0 ; (2) SC = 0.3 ; (3) SC = 0.6. 

the ‘fine’ line structure for a more correct deter- 
mination of selective properties of medium should be 
taken into account. However, this process is complex 
and requires a long computation time. That is why it 
is worthwhile carrying out additional investigations 
to work out the averaging method for obtaining the 
average over the finite spectral range absorbing 
coefficient, as a function of the ‘fine’ line structure, 
medium thickness and scattering coefficient. At 
present we are investigating this problem. 

The influence of boundary emissivity on the radiant 
transfer characteri:stics was also investigated for a flat 
layer for the difftue-emitting boundary surface (con- 
dition 2.1). Numerical results show the outgoing radi- 
ant flux and the outgoing radiant intensity decreasing 
as a boundary emissivity E is increasing (Fig. 7). How- 
ever, net radiant flux Qn = E *(Q,-rc-B(T,)) is 
increasing (Fig. 7). 

3.2. Influence of geometric form 
At this point, we study the influence of geometric 

form of domain on distribution of density of radiation 

1.0 

\2 
q”.5 -7p3 

~, , 
L / / / 
’ ,’ I’ , 

/0 //0/‘------- 
>l 

0 0.5 1.0 
E 

Fig. 7. Influence of boundary emissivity on the outgoing 
(---) and net (----) radiant flux density: (1) z = 0.1 ; (2) 

Z = 1; (3) t = 10. 

-0 

..5 

0.5 1.0 1:s .‘- X 

0 ..:a. _ -. 0.80 - q 

Fig. 8. Distribution of outgoing radiant flux on the boundary 
surfaces of emitting and absorbing medium. 

fluxes (QJ, falling on medium boundary surface, with 
homogeneous and constant values of medium’s 
optical characteristics. The numerical investigation 
shows that nonhomogeneity of radiant fluxes dis- 
tribution may achieve a substantial value. It is 
affirmed by Fig. 8 where the typical distribution of 
outgoing radiant fluxes is shown. The results have 
been received under the following conditions x = 1.0 
m -’ ; r~ = 0.0 m-’ ; the medium has a homogenous 
temperature distribution ; the domain bottom is the 
specular surface and all other boundaries are the 
transparent surfaces (boundary condition 2.3), inci- 
dent radiation is absent. Taking into account the com- 
plication of analysis of the 3-D distributions we will 
show the basic regularities of influence of geometric 
form on the radiative transfer characteristics for 2-D 
cases. 

Hereafter, if another is not indicated the optical 
density of the medium is set equal to 1, the albedo for 
scatter (SC) is set equal to 0, the emissivity of boundary 
surface E = 0.8, the medium’s temperature T = 1300 
K, and the boundary temperature T, = 1100 K. 

The numerical investigation shows that the density 
of the radiative flux incident on the boundary surface 
depends on the distance between the given boundary 
portion and the center of the hot medium ‘s zone. The 
density of radiative flux (QJ, is smooth function of 
the distance for smooth boundary. 

At first, we consider the case in which the domain 
is a regular polygon. Under the above-mentioned con- 
ditions, the maximal value of the falling on the bound- 
ary surface radiant flux is on the middle of each side. 
The QP value decreases towards the domain corners. 
The typical flux distribution near the corner point of 
the right polygon is shown in Fig. 9. This picture 
illustrates the influence of the domain’s geometry on 
the maximal ‘reduced difference’ which is determined 
as 
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q 

0.8 - 

0.7 
-al2 

I 
a12 

Fig. 9. Distribution of the density of reduced outgoing flux 
along the boundary of right triangular (1) and square (2) 

domains. 

0.3 

q 0.2 

0.1 
~ 

ol 
3 6 9 12 

N 
Fig. 10. The ‘maximal reduced difference’ of values of the 
outgoing radiant flux density along the boundary as a func- 

tion of side’s number of the regular polygon. 

Increasing the side’s number (N) of the regular poly- 
gon leads to the rapid decreasing of the AQ value. 
The distribution of Q, along the boundary surface is 
practically homogenous at N > 12 (Fig. 10). 

If the domain form differs from regular polygon, 
the value density of the radiant flux coming to a corner 
point from various sides may be different (Fig. 11) 

This situation becomes clearer if we consider the angu- 
lar distribution of the outgoing radiant intensity in 

0.8 
t 1 

0.4 , , 
-b/2 0 al2 

Fig. 11. Distribution of the density of reduced outgoing i?ux 
along the boundary of rectangular domain : (1) TW < r, ; (2) 

T,> Tb. 

Fig. 12. The angular distribution of the radiant intensity at 
the comer point of rectangular domain. 

the corner point (Fig. 12). The dotted line corresponds 
to the maximal value of the radiant intensity in the 
point. The analysis of these results shows that the 
value of ‘reduced discontinuity’ of outgoing radiant 
fluxes at the corner point. 

SQ = t-9 Q,(x) - _$ Q,(Y) Qp,max (15) 

is not equal to zero if the bisector of the corresponding 
corner is not the symmetry axis of the domain, other- 
wise SQ = 0. This is confirmed by Fig. 13, where the 
distribution of the outgoing radiant flux on the bound- 
ary surfaces of a polygon with five sides is shown 
(AB = DC = ED = a, BC = AE = 0.5~). It should be 
noted that the same situation takes place when the 
symmetry of the optical characteristics of the medium 
and the boundary is broken. For example, if the 
square sides have a different temperature, then SQ is 
not equal to zero in the corner point. 

Here, we analyze the dependence of AQ and SQ on 
the emissivity of the boundary surface, optical density 
of medium, profile of temperature and albedo for 
scatter. This study is carried out by the example of 
rectangle domain with sides a and b (a = 2b), when 
every other parameter of the medium is as described 
above. 

The numerical analysis shows the AQ and SQ 
values’ dependence of the relative difference between 
the boundary radiation and ‘own’ medium radiation. 
Here, ‘own’ medium radiation is the resulting radi- 
ation J, + aJ, where J,, is the intensity of the boundary 
radiation and 6J is its part absorbed or intensified 
by the medium. For example, the increasing of the 
boundary surface emissivity causes the increase in AQ 
and SQ, so, as with increasing E ‘own’ boundary radi- 
ation E * B(T,) grows and it leads to further increasing 
of the nonhomogeneity of the radiant flux distribution 
on the boundary (Fig. 14). 

The influence of the relative difference between the 
temperature of the boundary and the medium 
(6T = (Tb- T,,,)/r,) is illustrated in Fig. 15. The AQ 
and SQ dependence on 6T has a linear character under 
the above-mentioned conditions. The increasing of 
leads to the growing of the nonhomogeneity of the 
outgoing radiant flux distribution on the boundary 
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Fig. 13. Distribution of the radiative flux density along the boundaries of five-sides polygon. 

0.15 

L ’ 

7 

0.05 7 

0 0.5 1 .o 
E 

Fig. 14. Influence of wavelength (a) and boundary emissivity 
(b) on the values of AQ and SQ. 

6T 
Fig. 15. Influence of Uon values of AQ and SQ. 

surface. It is connected with the increasing of the 
relative difference between ‘own’ radiation of the 
boundary and the medium. Changing the sign of 6T 
leads to the qualimtive changing of the distribution of 
QP (Fig. 11, curve 2). As 6 T < 0 the QP value increases 
from the side mid.dle to the corner point and the QP 
value increases from the corner point to the side 
middle, so the optical way of the incoming ray from 
the nearest boundary is shorter and the ‘own’ radi- 
ation of the boundary effects more actively. 

It is of interest to consider the influence of the 
optical density of the medium on the distribution of 
the radiant flux falling on its boundary. The medium 
does not practically take part in the process of radi- 
ative transfer when r < 0.01. As the temperature of 
the boundary is homogeneous, so the distribution of 

the outgoing radiant flux on the boundary is homo- 
geneous too. The ‘own’ radiation of the medium grows 
with increasing t and it effects more actively on the 
radiative transfer. The nonhomogeneity of the radiant 
flux distribution increases too. The value of the maxi- 
mal difference of the radiant flux density AQ has its 
pronounced extremum at the certain value of the 
optical density of nonhomogeneous medium (Fig. 16). 
The decreasing of AQ is observed as further increasing 
r. This A behavior is connected with the non- 
homogeneity of the medium temperature. More cold 
layers of the medium near the boundary begin to 
weaken the outgoing radiant fluxes and to lead to its 
more homogeneous distributions along the boundary. 
If the temperature distribution is homogeneous then 
the AQ value has not its pronounced extremum (Fig. 
16, dotted line). 

As r -P 0 and z --f co, the SQ value is equal to zero, 
the 6Q(r) dependence has the extremum (Fig. 16) for 
homogeneous and nonhomogeneous medium. As r --f 
co, one can obtain the formula to define the reduced 

incident radiant flux at the corner point of rectangular 
domain : 

The influence of the albedo for scatter on the AQ 
and SQ is illustrated in Figs. 17 and 18. The increasing 
of the scattering leads to growing the maximal differ- 
ence, AQ, and decreasing the corner point dis- 

Fig. 16. Values of AQ and SQ as a function of the optical 
density of homogeneous (---) and nonhomogeneous (--) 

medium. 
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_*--5 

O.lo- 
SC 

Fig. 17. Influence of SC on the values of SQ for homogeneous 
(1,2) and nonhomogeneous (3,4) medium : ---5 = 0.5 ; 

-- -T = 3.0. 

0.06 - 

SC 
Fig. 18. Influence of SC on the value of SQ. 

continuity SQ (Fig. 18). If the medium is non- 
homogeneous the AQ value may have its pronounced 
extremum at certain values of optical density and 
albedo for scatter of the medium. 

4. CONCLUSION 

An effective numerical solving algorithm of the inte- 
gro-differential radiative transport equation has been 
proposed. The described method allows one to cal- 
culate the radiative intensities and fluxes in an absorb- 
ing, emitting and scattering medium of complex 3-D 
geometry. The numerical investigation of the influence 
of the medium’s optical properties and boundary geo- 
metrical form on the radiation propagation in the 

above-mentioned media. The received results show 
possibilities of radiative heat transfer intensification 
by the control of the optical properties of the heat- 
transfer agent and boundary surfaces. The carried out 
investigation has shown that the form of domain filled 
with an absorbing, scattering and emitting medium 
essentially effects on the radiant flux distribution 
along its boundary surface. One may obtain more 
homogeneous flux distribution or other concentrate 
fluxes on some boundary part by the directive 
changing of the domain form. While designing the 
furnace chamber, one should take into account the 
influence features of the medium form on the radiative 
transfer characteristics. 
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